University Benha

Faculty Science

Course Specifications

Programme(s) on which the course is given: Basic Science

Major or Minor element of programs

Department offering the program: Physics

Department offering the course: Physics

Academic year/level 1st year /1st semester

Date of specification approval: 2008

A- Basic Information

Title: Electromagnetic and Optics Code: Phy101

Credit Hours: Lecture: 4hr/week

Tutorial: 1 hr/week Practical: 3 hr/week Total:8 hr/week

B- Professional Information

1 – Overall Aims of Course: By Finishing of this course the graduate will be able to:

understand the natural of light, the absorption, the scattering of light, the quantum optics and laser and the optical measurements. Also, understand the concepts of electricity and magnetic effects.

2 – Intended Learning Outcomes of Course (ILOs)

a- Knowledge and Understanding:

To make the graduate able to:

- al-Understand the natural of light.
- a2- Understand the absorption and scattering of light.
- a3- Study the quantum optics and laser.
- a4- Understand the optical measurements.
- a5- Know the electric fields and electric potentials

a6- Understand Kirchoff's law

b- Intellectual Skills

To make the graduate able to:

- b1- Differentiate between the natural materials and the light
- b2- Analyze the different light phenomena.
- b3- Work in a circuit analysis and networks.
- b4- Collect, summarize and analyze the practical data.

c- Professional and Practical Skills

To make the graduate able to:

- c1 Analyze the properties of the natural light.
- c2- Design the apparatuses which depend on the light.
- c3- Create communication circuits and logic circuits.

d- General and Transferable Skills

- d1- Solve problems.
- d2- Work in team.
- d3- Wright reports

3- Contents

Topic	No. of	Lecture	Tutorial/Practical
	hours		
Natural of light	12	4	2/6
Velocity of light	4	4	
Absorption and scattering	11	4	1/6
Quantum optics and laser	7	4	0/3
Optical measurement's	7	4	0/3
Coloumb's law and Gauss	10	8	2/0
theorem for fields			
calculations			
Electric potential	4	4	
Capacitances	12	4	2/6
Electric current and Kirchoff	12	4	2/6
law			
Magnetic field and motion of	12	4	2/6
charges			
Applications	4	4	

4- Teaching and Learning Methods

4.1- Lectures

- 4.2-Practical training
- 4.3-Class activities

5- Student Assessment Methods

- 5.1 Discussion to assess Understanding
- 5.2 Oral exam to assess understanding
- 5.3 Practical exam to assess applying and evaluating the information.
- 5.4 Final term exam to assess knowledge with understanding

Assessment Schedule

Assessment 1 Discussion week 3

Assessment 3 Oral exam week 1-12

Assessment 4 Practical exam week 13

Assessment 2 Final term exam week 14

Weighting of Assessments

Mid-Term Examination	5 %
Final-term Examination	60%
Oral Examination.	10%
Practical Examination	20 %
Semester Work	5 %
Other types of assessment	%
Total	100%

6- List of References

- 6.1- Course Notes: Lecture materials
- 6.2- Essential Books (Text Books)

Halliday, Fundamental of Physics, 6^{th} edition, John Wiley & Sons.Inc. (2006)

6.3- Recommended Books

6.4- Periodicals, Web Sites, ... etc

http://www. hep.com

http://www. Physics2000

http://www. Physics today

7- Facilities Required for Teaching and Learning

Personal computer, data show, power point application, and experimental tool devices.

Course Coordinator: Prof. Dr. Nabil El-Nagar and Prof. Dr. Mabrok El-Mansy

Head of Department: Prof. Dr. L.I. Abou-Salem